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ABSTRACT
This paper describes the design of a system to enable large-
scale testing of new software stacks and prospective high-end
computing architectures. The proposed architecture com-
bines system virtualization, time dilation, architectural sim-
ulation, and slack simulation to provide scalable emulation
of hypothetical systems. We also describe virtualization-
based full-system measurement and monitoring tools to aid
in using the proposed system for co-design of high-performance
computing system software and architectural features for fu-
ture systems. Finally, we provide a description of the imple-
mentation strategy and status of the proposed system.

1. INTRODUCTION
Developing hardware, system software and applications

for next-generation supercomputing systems requires fast
large-scale testbeds. Such testbeds allow developers to study
the impact of both architectural and software changes on
overall application performance. Given recent emphasis on
hardware/software co-design methodologies, which rely on
continuous evaluation of the impact of hardware, system
software and application changes, these testbeds have be-
come particularly important.

Our position is that virtualization-based system emula-
tion is an effective approach for accelerating the deployment
and performance of testbeds for simulating novel, highly-
concurrent architectures. Furthermore, we propose leverag-
ing recent work on slack simulation [3] in distributed virtual
machine emulation; the allows distributed virtual machine
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monitor emulations to be only loosely synchronized, further
accelerating testbed performance.

In this paper, we describe the design of an emulation-
based framework that we are researching to provide a testbed
for HPC system and application architects. We focus on
time-to-result for large scale simulation runs of real appli-
cations instead of complete accuracy. This approach is in
contrast to past work on cycle accurate node simulations [1]
or high-fidelity cluster-level simulations that rely on skele-
ton applications or mini-apps to complete simulation runs
in reasonable amounts of time [9]. We do assume that such
simulations are also used as part of the development process.

Our approach focuses on the use of a virtual machine mon-
itor (VMM) to emulate individual nodes of the target sys-
tem, with the software stack under evaluation running as a
guest software stack in a virtual machine (VM). This allows
much of the guest stack to run natively, with the VMM in-
tercepting hardware calls that require additional handling
for architectural simulation and controlling the passage of
time in the guest stack. We use standard time dilation tech-
niques [6, 5] to allow a single node to emulate additional
processors and nodes. Unlike past work in this area, we
use slack simulation to enable the virtual machine to em-
ulate the behavior of low-latency I/O devices such as net-
work interface controllers (NICs). In this approach, dis-
tributed virtual machine emulations are coarsely synchro-
nized to a global time source instead of finely synchronized
on an operation-by-operation basis. The level of synchro-
nization will be used to control emulation accuracy when
evaluating network-intensive HPC workloads.

VM-based slack emulation potentially sacrifices flexibility
in what systems it can evaluate. In particular, emulation
works best when the system being emulated is relatively
similar to the system on which the emulation is running.
For example, larger system scales, systems with additional
or faster processors, and new I/O devices can all potentially
be emulated efficiently. Dramatically different processor or
memory architectures, however, will not be feasible to em-
ulate because they would require continual intervention by
the VMM, substantially increasing time to solution.

In the remainder of this paper, we first describe several
motivating examples that are driving our work in this direc-
tion. We then describe the overall architecture of the sys-
tem we are building, along with selected architectural details
from specific portions of the system. Finally, we describe our
implementation strategy and status, discuss related work on
virtualization-based system emulation, and conclude.
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2. EXAMPLES USES

2.1 Performance-Heterogeneous Processors
Many-core systems that include processors with hetero-

geneous performance characteristics, particularly different
clock speeds on different processors, comprise the first kind
of system we seek to emulate. Such systems present inter-
esting challenges to both HPC application and system soft-
ware design, particularly for examining issues related to ap-
plication load balancing, node-level resource allocation, and
inter-processor communication performance. Enabling de-
velopment and evaluation of new application, runtime, and
system software techniques for these systems is a key moti-
vating factor in the work described in this paper.

2.2 Global Non-coherent Addressing
Globally addressable memory in distributed-memory sys-

tems is often proposed for deployment in future HPC sys-
tems, particularly latency-oriented systems designed to han-
dle large, irregular data sets. Integrating low-latency remote
DMA network devices directly with the hardware memory
addressing system could dramatically simplify the system
programming model by providing low-latency access to re-
mote memory. It would also avoid the the performance
penalties of previous software-based distributed shared mem-
ory systems. Because virtualization software can easily in-
tercept virtual and physical memory accesses, global non-
coherent addressing is an ideal use-case for virtualization-
based emulation of future large-scale HPC systems.

2.3 Active Messaging Network Interfaces
Finally, active messages are an increasingly important mech-

anism for low-latency communication in future systems, with
recent research demonstrating their usefulness in implement-
ing high-performance distributed graph algorithms [13]. New
network interface cards are being designed to handle active
messages, for example with new control structures or the
ability to offload message handlers to the NIC. Evaluation
of the performance of these systems on meaningful algo-
rithms and data sets at scale is imperative to understand
the potential benefits and challenges they present. Because
no real-world implementations of such cards exist, however,
they are another hardware enhancement with impact across
the breadth of the software stack that motivates the research
described in this paper.

3. ARCHITECTURE

3.1 Overview
Figure 1 shows the general architecture of the system.

This system is based on a virtual machine monitor (VMM)
that intercepts relevant hardware calls from the application
and system software being evaluated. The VMM handles
these calls to emulate the hardware on which this applica-
tion/system software is being evaluated, and also provides
monitoring and control functionality.

The virtual machine monitor is the central element in this
system. Its primary responsibility is to interact with the
guest software stack to provide the illusion that the guest
is running on the hardware being emulated. To do this, it
intercepts guest software stack hardware accesses when nec-
essary through standard virtualization techniques and per-
forms the following tasks:

• Emulate specified processor/system performance by con-
trolling the real and apparent flow of time in the virtual
machine;

• Invoke external architectural simulation tools to per-
form detailed simulation of external devices;

• Synchronize the local and remote processor and node
clocks to adjust for varying times due to architectural
simulation costs;

• Provide performance information about the emulated
machine to external monitoring tools

We describe each of these tasks in detail in the remainder of
this section.

3.2 VMM-based Emulation
In addition to intercepting guest software stack calls and

coordinating activity between various system components,
the VMM is responsible for general processor emulation func-
tionality. In particular, we will use VMM-based emulation
to achieve the following:

1. Multiple nodes using a single node

2. Increased numbers of processors on a node

3. Increased and decreased processor speeds on a node

In each of these cases, well-known past work on virtual ma-
chine time dilation techniques [6, 5] will form the initial basis
for our work. Time dilation runs each guest node in a virtual
machine that runs at a fixed fraction of real time by schedul-
ing the virtual machine less frequently and delivering timer
interrupts more or less frequently that real time.

Time dilation is important in our approach because it al-
lows a core or node to emulate more than one node, and
provides a virtual global clock source that synchronizes the
activities of all nodes in the emulated system. For example,
time dilation by a factor of four allows a single node to em-
ulate four hardware nodes. It also guarantees that time is
elapsing at the same rate on all nodes in the system so that
causality is preserved in communications between nodes.

3.3 External Architectural Simulation
An external architectural simulator will be used to simu-

late key I/O devices such as the active messaging NICs de-
scribed in Section 2.3. We focus on full device simulation of
such interfaces as opposed to simpler performance emulation
because of the device’s potential impact on system software
performance and the application programming model. In
addition, the use of an existing architectural simulator al-
lows existing device models to be leveraged, and provides a
straightforward path for implementing new models.

Multiple simulated architectural devices will be tied to-
gether into a distributed network simulation using an ap-
proach similar to that we used in our previous work [9]. In
particular, we will use Lamport clock-style message times-
tamps to propagate message transmission and reception times.
The global synchronization provided by a time dilation ap-
proach, subject to the complications described in the follow-
ing subsection, will substitute for the periodic global barrier
synchronization used in that approach.
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Figure 1: High-level Architecture of Large-scale VM-based Testbed

3.4 Distributed Slack Simulation
The simulation capabilities described above necessitate

occasionally pausing simulation of a guest core or node for
a relatively substantial length of time. As a result, time in
different cores and nodes may occasionally advance at dif-
ferent rates, unlike in traditional time dilation systems. If
these differences are not accounted for, simulation accuracy
can suffer. For example, if time on node A is progressing
at a significantly slower rate than on node B and node A
sends a message to node B, the time at which node B re-
ceives the message from node A may be incorrect by a large
amount. Traditional approaches to addressing this problem,
for example optimistic parallel discrete event simulation [4],
have runtime costs that are potentially expensive and are
complex to implement in a virtual machine monitor setting.

We plan to use dilated time simply as a target rate at
which guest time should advance instead of a fixed rate at
which time must advance to address this issue. Doing so will
keep independent cores approximately synchronized while
still allowing guests to deviate from dilated time when neces-
sary for simulation purposes. When such deviation happens,
the virtual machine will need to gradually control guest time
back towards the target time. This is approach trades away
some accuracy for improved simulation time, and is a form
of slack simulation [3], a recent approach to speeding up
parallel simulation systems.

To control guest time that has deviated from the target
time back towards the target this, the virtual machine will
have to slowly advance time more quickly than usual in the
guest, for example by injecting timer interrupts slightly more
quickly. The VM must, however, bound how much it adjusts
time forward; when the guest is only occasionally monitor-

ing low accuracy timers (e.g. the PIT timer), the VM will be
able to advance time more quickly in the guest towards tar-
get time. When the guest is quickly polling high-resolution
timers like the timestamp counter, however, the VM can-
not radically adjust guest time without potentially breaking
guest software stack behavior.

3.5 Dynamic Time Dilation
We also plan to explore dynamically adjusting the time

dilation factor across nodes, because correctly setting time
dilation factor is vital for trading off emulation accuracy and
time-to-result. For example, if guest simulated time deviates
by large amounts or diverges from dilated time, emulation
accuracy can suffer, and dilating time further (trading off
time-to-result) can be used to improve emulation accuracy.
Similarly, if the emulation spends large amounts of time with
no VMs to dilate time appropriately, reducing time dilation
can improve simulation speed without sacrificing accuracy.

To deal with global effects of changing the time dilation
factor, we are exploring gossip-based approaches that in-
clude periodic global agreement, similar to our past work
on load balancing [14]. By including time information in
transmitted messages, something that is already necessary
for accurate network emulation (see Section 3.3), individual
nodes will be able slowly change their time dilation factor
and stay approximately in sync with the remainder of the
simulation. Larger changes in time dilation factor that are
more likely to lead to de-synchronization of nodes, will still
require some form of global agreement.

The goal of this distributed management of time dilation
between nodes is to allow nodes making heavy use of simu-
lation features to be more heavily dilated than those that do
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not. In addition, allowing the time dilation factor to vary
over the course of the run can potentially reduce the time
required to complete a full emulation run by allowing emu-
lation to run with less time dilation when less simulation is
required.

3.6 VM-based Monitoring and Analysis
Performance analysis for this emulation framework is nec-

essary for two primary reasons: 1) to help users under-
stand and evaluate the performance of their applications at
a micro-level and 2) to help us understand the behavior of
the framework itself. To do this, the virtual machine moni-
tor will provide abstractions and mechanisms for cross-stack
performance monitoring and analysis to external monitoring
tools.

The VMM provides a useful vantage point that makes it
possible for profilers to span at least four layers: the ap-
plication, the OS, the “hardware” interface exported by the
VMM and the actual hardware. This is possible because,
many instruction-visible events are naturally intercepted by
the VMM (e.g., interrupts) or can be funneled through the
VMM via mechanisms such as virtual address translation
(for example, access to a specific memory region). Second,
microarchitectural events can be monitored by virtualizing
the performance counters. The key challenges are leverag-
ing familiar abstractions for accessing performance data and
and providing this data to higher-level guest OSes or appli-
cations and the enablement of non-intrusive analyses.

4. IMPLEMENTATION PLAN AND STATUS

4.1 Virtual Machine Monitor
We are basing our implementation of the proposed archi-

tecture around the Palacios virtual machine monitor that
we have previously developed to support lightweight virtu-
alization in HPC environments [8]. Palacios is an HPC-
oriented virtual machine monitor designed to be embedded
into a range of different host operating systems, including
the lightweight kernels [11], Linux variants potentially in-
cluding the Cray Linux Environment [12], the MINIX mi-
crokernel, and others. Recent work has shown that Palacios
can virtualize thousands of nodes of a Cray XT class super-
computer with less that 5% overhead [7]. Palacios’s combi-
nation of low overhead on HPC systems and embeddability
into traditional HPC operating systems, both lightweight
and commodity-based, makes it an ideal platform for our
research.

Time dilation support.
To support time dilation and in Palacios, we are augment-

ing Palacios time management with the necessary scheduling
and timer interrupt control features. In particular, to slow
down guest time, Palacios uses two quantities:

Target cycle rate, the number of cycles that the guest
should see execute per emulated second of guest time.

Target time rate, the time dilation factor for this guest
which determines at what rate timer interrupts are de-
livered to the guest compared to real time.

At emulation boot time, Palacios uses the sum of the tar-
get cycle rates of all of the virtual processors on each host
specified to determine the minimum required target time

rate for the virtual machines it will emulate. For example,
if virtual machine monitor must emulate 4 3Ghz processors
using 1 2Ghz core, it sets the minimam required target time
rate to 6 ((4∗3Ghz)/2Ghz)). Note that the target time rate
can be adjusted upward from this point, but cannot go any
lower than this minimum.

Given a taret cycle rate and target time rate, Palacios
then schedules guest cores so that each receives the appro-
priate number of cycles in each one emulated second. In the
example above, for example, Palacios needs to use a 2Ghz
processor to give each of 12 virtual cores three billion cy-
cles in 6 seconds of real time. In this simple example, that
is done simply by giving each core 1/12th of the host pro-
cessor, but in more complicated cases with higher specified
time dilation, Palacios may idle the core periodically so that
the correct number of guest cycles elapse for each second of
emulated guest time.

One important impact of this is that the guest timestamp
counter (TSC) does not have to be completely virtualized;
TSC offsetting supported by both Intel VT virtualization
and AMD SVM virtualization is sufficient. This is important
because virtualizing the TSC is potentially very expensive—
full TSC virtualization turns an instruction that takes at
worst tens of cycles into one that takes tens of thousands of
cycles.

Architectural and Slack Simulation Support.
In addition to the time dilation support mentioned above,

we have also added the ability to pause, unpause, and sy-
chronize guest time to a provided reference time source to
Palacios. In particular, Palacios now keeps track of how
often timer events are read or injected into the guest, and
uses this information to bound how quickly it offsets guest
time towards the desired target time rate. This limits guest-
visible timer inaccuracy while still allowing Palacios to con-
trol time passage in the guest for slack simulation purposes.

VM-VM Communication.
For VM-to-VM communication, we are relying on RDMA

communication facilities provided by the host operating sys-
tem in which Palacios is embedded, for example Infiniband
device support. The low latencies provided by such devices
are essential for fast simulation of low-latency network de-
vices, and support for accessing such devices is already being
added to Palacios as part of another project.

4.2 Simulator Integration
To support novel HPC hardware devices, we are work-

ing on integrating the Structural Simulation Toolkit (SST)
architectural simulator with Palacios. SST is a parallel dis-
crete event simulator that provides a modular framework for
constructing hardware device models at various levels of fi-
delity. SST can be used to simulate large-scale systems, and
is itself an MPI program. The downside to SST’s software-
based approach is performance. Our goal in integrating
Palacios with SST is to achieve higher levels of simulation
performance by executing most code at near native speed in
the hardware-accelerated virtual machine environment, and
only passing control to SST when necessary.

The general structure of our proposed architecture is shown
in Figure 2. Palacios already provides mechanisms for hook-
ing specific instructions and regions of guest memory such
that they always cause a VM exit, passing control from the
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Figure 2: High-level Architecture of Palacios VMM
and SST Architectural Simulator Integration

guest back to Palacios for handling. At this point, Palacios
forwards information about the event to the SST forward-
ing agent in host OS kernel-space, which then forwards it
the SST instance running in user-space. This is analogous
to how KVM interacts with Qemu on Linux. An alternative
and potentially higher performance approach would be to
integrate SST directly with Palacios and have the combina-
tion execute fully in host OS kernel, but we expect that it
would be difficult to adapt SST for the limitations of running
in kernel-space. In our proposed scheme, the forwarding
agent is responsible for translating between Palacios events
and the SST events needed to interacting with the SST in-
stance. The timing information in SST events will be used
by Palacios to control the progression of time in the guest
environment, therefore providing a realistic passage of time.

The primary limitation of this approach is that it lim-
its the extent of what can be simulated. Obviously, if ev-
ery guest instruction causes a VM exit, performance will be
worse than when simulating with SST alone due to the in-
creased overhead. The best situation will be when the vast
majority of instructions are executed natively, and only a
small percentage are forwarded to SST for handling. We ex-
pect that simulating relatively self-contained hardware fea-
tures such as network interfaces and global address space
schemes will demonstrate this behavior and perform well
with our approach.

4.3 Monitoring and Analysis
To provide monitoring and analysis support, our baseline

approach is to extend the Performance API (PAPI) [2] to
support VMM performance counters. Our initial focus will
be on the high-level PAPI interface that supports simple
(start, stop and read) event measurements. Later, we will in-
clude support for PAPI’s low-level, programmable interface
that supports grouping related events to provide higher-level
information. Using this approach means that the myriad
of existing PAPI-based tracing, profiling and analysis tools
would become usable with our VMM framework.

Additionally, we will explore mechanisms that perform

rudimentary performance analyses. Our approach is to build
a framework we call VMM Tuning and Analysis (VTAU) us-
ing the TAU [10] framework. The VTAU framework will be
used to wrap performance critical components (for example,
functions, code regions and loops) with tracing or profil-
ing code as appropriate. This will allow us to control the
collection of timing and event information mapped to VMM
functionality. Our VTAU framework will be able to leverage
the feature-rich visualizations of the TAU framework.

5. RELATED WORK
A number of systems have used techniques similar to the

ones we suggest for simulating or emulating large-scale sys-
tems. As mentioned above, DieCast’s time dilation ap-
proach [6, 5] is closely related to our work, and forms a
partial basis for the system we propose. Unlike the system
we propose, however, DieCast makes only limited use of ar-
chitectural simulation, in particular only for high-latency
devices such as disk systems. This avoids the time synchro-
nization issues inherent in simulating low-latency devices,
but limits DieCast’s usefulness in studying the impact of
novel low-latency I/O devices in large-scale systems.

Also closely related to the system we propose is past work
on cluster-based simulation of cluster systems [9]. This sys-
tem uses network simulation such as we propose in combina-
tion with a fine-grained processor simulator, and allows for
detailed simulation and analysis of processor and memory
system changes not possible in the system we propose. Be-
cause of its reliance on cycle-accurate simulation, however,
its runtime is bounded by the the runtime of individual node
simulations, which can result in slowdowns of several orders
of magnitude. As a result, this and similar systems are most
appropriate for studying the performance of benchmarks and
simplified mini-applications, not full applications such as we
seek to study.

6. CONCLUSIONS
In this position paper, we have described the architecture

of a virtualization-based emulation system. This design is
based on the novel combination of a number of existing tech-
niques, including time dilation, slack simulation, and net-
work simulation and emulation, with additional techniques
to improve their performance. The resulting system seeks
to provide fast, full-scale emulation of future large-scale ar-
chitectures. Such emulations will aid the development both
hardware and software for upcoming exascale class super-
computers.
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